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ABSTRACT 

 
ARTICLE INFO 

The goal of this project is to make a program that can teach itself to do a specific task 

on its own which can also be called as "Self Learning AI". Our attempt here would be 

to understand the basic AI that can be implemented in a program and understanding 

the benefits and the drawbacks of the same. We would design a program that would 

be able to teach itself to play a 8 bit game on its own without human intervention and 

without coding the path to play that game. Here the program will not have any prior 

knowledge of how to play the game or what should be done to play it correctly. This 

project will only know that it has to reach the end of the game. The program will have 

to teach itself on what decisions to take in the game in order to complete a stage. 

Every decision that the program will take will be marked as a neuron and it will be 

tested constantly to find out if that decision will help it survive. Decisions will be 

changed from time to time. Only the decisions that are Optimum will be kept and 

other decisions will be discarded. The process will be similar to how a species will 

evolve with passing years in the wild, where the habits that help the species to survive 

longer are identified and passed on to the future generations through genes. The 

commercial aspect of this topic is yet to be explored as this area is not very common 

and simple to implement. The code will be independent and would receive input from 

a physical or virtual machine that will be used to run the copy of the game. All the 

inputs will be provided by the algorithm and no human intervention will be done. 

Every time a set of decision is finalized by the algorithm we will call that group of 

decision as "Generation". To depict how a species evolve over 100's of years. 
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I. INTRODUCTION 

Neural networks, more accurately called Artificial Neural 

Networks (ANNs), are computational models that consist of 

a number of simple processing units that communicate by 

sending signals to one another over a large number of 

weighted connections. They were originally developed from 

the inspiration of human brains. In human brains, a 

biological neuron collects signals from other neurons 

through a host of fine structures called dendrites. The 

neuron sends out spikes of electrical activity through a long, 

thin stand known as an axon, which splits into thousands of 

branches. At the end of each branch, a structure called a 

synapse converts the activity from the axon into electrical 

effects that inhibit or excite activity in the connected 

neurons.  

 

 

When a neuron receives excitatory input that is sufficiently 

large compared with its inhibitory input, it sends a spike of 

electrical activity down its axon. Learning occurs by 

changing the effectiveness of the synapses so that the 

influence of one neuron on another changes. Like human 

brains, neural networks also consist of processing units 

(artificial neurons) and connections (weights) between them. 

The processing units transport incoming information on 

their outgoing connections to other units. The "electrical" 

information is simulated with specific values stored in those 

weights that make these networks have the capacity to learn, 

memorize, and create relationships amongst data. A very 

important feature of these networks is their adaptive nature 

where "learning by example" replaces "programming" in 
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solving problems. This feature makes such computational 

models very appealing in application domains where one 

has little or incomplete understanding of the problem to be 

solved but where training data is readily available. These 

networks are ―neural‖ in the sense that they may have been 

inspired by neuroscience but not necessarily because they 

are faithful models of biological neural or cognitive 

phenomena.  

 

ANNs have powerful pattern classification and pattern 

recognition capabilities through learning and generalize 

from experience. ANNs are non-linear data driven self 

adaptive approach as opposed to the traditional model based 

methods. They are powerful tools for modeling, especially 

when the underlying data relationship is unknown. ANNs 

can identify and learn correlated patterns between input data 

sets and corresponding target values. After training, ANNs 

can be used to predict the outcome of new independent 

input data. ANNs imitate the learning process of the human 

brain and can process problems involving non-linear and 

complex data even if the data are imprecise and noisy. 

These techniques are being successfully applied across an 

extraordinary range of problem domains, in areas as diverse 

as finance, medicine, engineering, geology, physics, biology 

and agriculture. There are many different types of neural 

networks. Some of the most traditional applications include 

classification, noise reduction and prediction.  

 

We are designing a program that can teach itself to achieve 

a goal determined by user without any prior knowledge of it. 

This program would have the ability to evolve from one 

state to the other without any human intervention. Similar to 

the real evolution cycle. Every decision that is taken by the 

program will be registered and evaluated on how long the 

decision helps it survive. Similar to this there would be a set 

of decision registered too where it will evaluate on how 

closer can it get to the assigned goal using the set. Decisions 

that are best for the program will be Saved or ―Breed and 

passed on to the next iteration ―Generation. This process 

will continue until the goal is met or reached. 

 

II. LITERATURE SURVEY 

 

[1] We studied neuroevolution and how to gain an 

advantage from evolving neural network topologies along 

with weights. We present a method, NeuroEvolution of 

Augmenting Topologies (NEAT), which outperforms the 

best fixed-topology method on a challenging benchmark 

reinforcement learning task. We claim that the increased 

efficiency is due to (1) employing a principled method of 

crossover of different topologies, (2) protecting structural 

innovation using speciation, and (3) incrementally growing 

from minimal structure. 

 

[2] We learn about Genetic Algorithms, the mutation 

operator is used to maintain genetic diversity in the 

population throughout the evolutionary process. Various 

kinds of mutation may occur ove time, typically depending 

on a fixed probability value called mutation rate. In this 

work we make use of a novel data science approach in order 

to adaptively generate mutation rates for each locus to the 

Neuroevolution of Augmenting Topologies (NEAT) 

algorithm. The trail of high quality candidate solutions 

obtained during the search process is represented as a third 

order tensor; factorization of such a tensor reveals the latent 

relationship between solutions, determining the mutation 

probability which is likely to yield improvement at each 

locus. The single pole balancing problem is used as case 

study to analyze the effectiveness of the proposed approach. 

Results show that the tensor approach improves the 

performance of the standard NEAT algorithm for the case 

study. 

 

[3] This paper introduces the real-time Neuroevolution of 

Augmenting Topologies (rtNEAT) method for evolving 

increasingly complex artificial neural networks in real time, 

as a game is being played. The rtNEAT method allows 

agents to change and improve during the game. In fact, 

rtNEAT makes possible an entirely new genre of video 

games in which the player trains a team of agents through a 

series of customized exercises. To demonstrate this concept, 

the Neuroevolving Robotic Operatives (NERO) game was 

built based on rtNEAT. In NERO, the player trains a team 

of virtual robots for combat against other players’ teams. 

This paper describes results from this novel application of 

machine learning, and demonstrates that rtNEAT makes 

possible video games like NERO where agents evolve and 

adapt in real time. In the future, rtNEAT may allow new 

kinds of educational and training applications through 

interactive and adapting games. 

 

III. SYSTEM ARCHITECTURE 

 

 
 

Result/Reward Analysis 

 

This is the center of the entire system where the 

Computation and comparisons of the rewards yielded by 

using activity are monitored. This block ensures that the 

activities yielding the most reward points and positive 

results are kept in the program and saved for improving. 

If it receives a negative mutation input from the network 

creation block; then it starts computing if the recent action 
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has generated this negative result or the entire network is 

negative. 

For positive mutation nodes it would calculate the reward 

and then the entire process will be repeated until end of the 

stage is reached. 

 

Network Creation 

Once this block receives control from the node creation 

block, a link will be created to the fitness of the network. 

This is done to monitor the effects of the current input on 

the survival of the character. If the survival fitness is good 

then that link is approved and the network of that node is 

created as a good input for the AI, and the control is passed 

on to the Reward analysis with a positive mutation node. If 

incase the result generated by the particular input is not 

good or preexisting the fitness calculation is done and the 

control is passed on to the Reward/Result analysis with a 

negative mutation. 

 

Node Creation 

 

Once this block receives inputs from the Input Generator, 

this block will create an effective node with the keystroke 

received; then it will  check if the same input node has be 

generated previously to verify the survivability of the action. 

Once this is cleared it will then relinquish the control to the 

Network creation block. 

 

I/O(Input / Output) 

 

This block generates keystroke when locations are received 

from the environment block.  

All the inputs that are generated are monitored by this block, 

also all the possible combinations of the inputs are tried to 

test the conditions of the environment and the character. 

Initially in the program this block plays a vital role as this 

block will ensure that the program starts working as soon as 

it is started. 

Outputs from this block are then forwarded to Node 

Creation. 

 

Environment 

 

In this block environment refers to the positions and 

locations of the character on the screen. 

These need to be monitored to ensure that progress is being 

made by the algorithm which can be then monitored by AI 

or human if necessary. 

This block will basically deal with creating position of the 

game character with respect to objects that are stationary in 

the game, while doing so it will also monitor the locations 

and paths of the object that are harmful for the game 

character. 

Output generated by this block are forwarded to the input 

generation block where the input as keystroke from the 

gamepad are taken. 

 

 

IV. PROPOSED FLOW 

 

 

 

 
 

V. RESULT 

 

We were able to create a program which had the ability to 

implement evolution theorized in the paper and learn to play 

the game on its own, the game we used here is 8 bit Mario. 

The initial run for the program to gather data for making 

decisions is about 3 hours when it reaches a set number of 

generations. This is variable as each run is dynamically 

different that the older run. 

The program only has knowledge of possible inputs that it 

can take i.e. Up, Down, Right, Left, A,B,X and Y. All these 

are standard inputs that can be given using a joystick and are 

common all over the world. The program starts with taking 

random inputs for the first few generations and later 

progresses to improving on the existing inputs or discarding 

the old once and using better input in each iteration. The 

working data is stored in RAM of the computer and used for 

comparison purposes of the program. The program will 

improve generation wise and reach the end of the stage 

without human help. 

Once the program clears the stage on its own and moves to 

the next stage of the game and starts working on the next 

stage. Here, you can choose whether to move to next stage 

or not. On the stage-selection screen. 

There is a stage where the performance of the program is 

saturated and it cannot be improved any further, if the 

program is run after the pool is saturated then improvements 

in the network are negligible in nature. This is because the 

game is designed in a way where the user needs a specific 

time to reach the stage end. The current record for fastest 

human player to reach the end of the stage is time 4:56.245 

(mm.ss) held by username: somewes dated: 25 May 2018 on 

Nintendo platform. 

Regardless of the saturation the breeding process continues, 

however the time required hence forth for encountering a 

game-changing connection is higher in linear fashion. 
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This program is just to portray that implementing AI on a 

smaller scale is possible and can be programmed to do 

simple tasks on its own. This can be further improved by 

implementing newer ideas in the respective fields. 
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