
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 12 Page 4730-4733, 2018 ISSN 2395-1621

© 2018, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

SELF LEARNING NEURAL

NETWORK
#1

NOEL NADVI,
#2

ZULKARNAYAN MALIK,
#3

PROF. KAMBLE J.R.

1
noelnadvi@gmail.com

2
zulkarmalik@gmail.com

3
kamble.jayshree3@gmail.com

#123

DEPARTMENT OF COMPUTER ENGINEERING

Al-Ameen College of Engineering, Koregoan Bhima,

Pune.

ABSTRACT

ARTICLE INFO

The goal of this project is to make a program that can teach itself to do a specific task

on its own which can also be called as "Self Learning AI". Our attempt here would be

to understand the basic AI that can be implemented in a program and understanding

the benefits and the drawbacks of the same. We would design a program that would

be able to teach itself to play a 8 bit game on its own without human intervention and

without coding the path to play that game. Here the program will not have any prior

knowledge of how to play the game or what should be done to play it correctly. This

project will only know that it has to reach the end of the game. The program will have

to teach itself on what decisions to take in the game in order to complete a stage.

Every decision that the program will take will be marked as a neuron and it will be

tested constantly to find out if that decision will help it survive. Decisions will be

changed from time to time. Only the decisions that are Optimum will be kept and

other decisions will be discarded. The process will be similar to how a species will

evolve with passing years in the wild, where the habits that help the species to survive

longer are identified and passed on to the future generations through genes. The

commercial aspect of this topic is yet to be explored as this area is not very common

and simple to implement. The code will be independent and would receive input from

a physical or virtual machine that will be used to run the copy of the game. All the

inputs will be provided by the algorithm and no human intervention will be done.

Every time a set of decision is finalized by the algorithm we will call that group of

decision as "Generation". To depict how a species evolve over 100's of years.

Article History

Received: 31
st

May 2018

Received in revised form :

31
st

May 2018

Accepted: 3
rd

 June 2018

Published online :

4
th

 June 2018

I. INTRODUCTION

Neural networks, more accurately called Artificial Neural

Networks (ANNs), are computational models that consist of

a number of simple processing units that communicate by

sending signals to one another over a large number of

weighted connections. They were originally developed from

the inspiration of human brains. In human brains, a

biological neuron collects signals from other neurons

through a host of fine structures called dendrites. The

neuron sends out spikes of electrical activity through a long,

thin stand known as an axon, which splits into thousands of

branches. At the end of each branch, a structure called a

synapse converts the activity from the axon into electrical

effects that inhibit or excite activity in the connected

neurons.

When a neuron receives excitatory input that is sufficiently

large compared with its inhibitory input, it sends a spike of

electrical activity down its axon. Learning occurs by

changing the effectiveness of the synapses so that the

influence of one neuron on another changes. Like human

brains, neural networks also consist of processing units

(artificial neurons) and connections (weights) between them.

The processing units transport incoming information on

their outgoing connections to other units. The "electrical"

information is simulated with specific values stored in those

weights that make these networks have the capacity to learn,

memorize, and create relationships amongst data. A very

important feature of these networks is their adaptive nature

where "learning by example" replaces "programming" in

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 12 Page 4730-4733, 2018 ISSN 2395-1621

© 2018, IERJ All Rights Reserved Page 2

solving problems. This feature makes such computational

models very appealing in application domains where one

has little or incomplete understanding of the problem to be

solved but where training data is readily available. These

networks are ―neural‖ in the sense that they may have been

inspired by neuroscience but not necessarily because they

are faithful models of biological neural or cognitive

phenomena.

ANNs have powerful pattern classification and pattern

recognition capabilities through learning and generalize

from experience. ANNs are non-linear data driven self

adaptive approach as opposed to the traditional model based

methods. They are powerful tools for modeling, especially

when the underlying data relationship is unknown. ANNs

can identify and learn correlated patterns between input data

sets and corresponding target values. After training, ANNs

can be used to predict the outcome of new independent

input data. ANNs imitate the learning process of the human

brain and can process problems involving non-linear and

complex data even if the data are imprecise and noisy.

These techniques are being successfully applied across an

extraordinary range of problem domains, in areas as diverse

as finance, medicine, engineering, geology, physics, biology

and agriculture. There are many different types of neural

networks. Some of the most traditional applications include

classification, noise reduction and prediction.

We are designing a program that can teach itself to achieve

a goal determined by user without any prior knowledge of it.

This program would have the ability to evolve from one

state to the other without any human intervention. Similar to

the real evolution cycle. Every decision that is taken by the

program will be registered and evaluated on how long the

decision helps it survive. Similar to this there would be a set

of decision registered too where it will evaluate on how

closer can it get to the assigned goal using the set. Decisions

that are best for the program will be Saved or ―Breed and

passed on to the next iteration ―Generation. This process

will continue until the goal is met or reached.

II. LITERATURE SURVEY

[1] We studied neuroevolution and how to gain an

advantage from evolving neural network topologies along

with weights. We present a method, NeuroEvolution of

Augmenting Topologies (NEAT), which outperforms the

best fixed-topology method on a challenging benchmark

reinforcement learning task. We claim that the increased

efficiency is due to (1) employing a principled method of

crossover of different topologies, (2) protecting structural

innovation using speciation, and (3) incrementally growing

from minimal structure.

[2] We learn about Genetic Algorithms, the mutation

operator is used to maintain genetic diversity in the

population throughout the evolutionary process. Various

kinds of mutation may occur ove time, typically depending

on a fixed probability value called mutation rate. In this

work we make use of a novel data science approach in order

to adaptively generate mutation rates for each locus to the

Neuroevolution of Augmenting Topologies (NEAT)

algorithm. The trail of high quality candidate solutions

obtained during the search process is represented as a third

order tensor; factorization of such a tensor reveals the latent

relationship between solutions, determining the mutation

probability which is likely to yield improvement at each

locus. The single pole balancing problem is used as case

study to analyze the effectiveness of the proposed approach.

Results show that the tensor approach improves the

performance of the standard NEAT algorithm for the case

study.

[3] This paper introduces the real-time Neuroevolution of

Augmenting Topologies (rtNEAT) method for evolving

increasingly complex artificial neural networks in real time,

as a game is being played. The rtNEAT method allows

agents to change and improve during the game. In fact,

rtNEAT makes possible an entirely new genre of video

games in which the player trains a team of agents through a

series of customized exercises. To demonstrate this concept,

the Neuroevolving Robotic Operatives (NERO) game was

built based on rtNEAT. In NERO, the player trains a team

of virtual robots for combat against other players’ teams.

This paper describes results from this novel application of

machine learning, and demonstrates that rtNEAT makes

possible video games like NERO where agents evolve and

adapt in real time. In the future, rtNEAT may allow new

kinds of educational and training applications through

interactive and adapting games.

III. SYSTEM ARCHITECTURE

Result/Reward Analysis

This is the center of the entire system where the

Computation and comparisons of the rewards yielded by

using activity are monitored. This block ensures that the

activities yielding the most reward points and positive

results are kept in the program and saved for improving.

If it receives a negative mutation input from the network

creation block; then it starts computing if the recent action

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 12 Page 4730-4733, 2018 ISSN 2395-1621

© 2018, IERJ All Rights Reserved Page 3

has generated this negative result or the entire network is

negative.

For positive mutation nodes it would calculate the reward

and then the entire process will be repeated until end of the

stage is reached.

Network Creation

Once this block receives control from the node creation

block, a link will be created to the fitness of the network.

This is done to monitor the effects of the current input on

the survival of the character. If the survival fitness is good

then that link is approved and the network of that node is

created as a good input for the AI, and the control is passed

on to the Reward analysis with a positive mutation node. If

incase the result generated by the particular input is not

good or preexisting the fitness calculation is done and the

control is passed on to the Reward/Result analysis with a

negative mutation.

Node Creation

Once this block receives inputs from the Input Generator,

this block will create an effective node with the keystroke

received; then it will check if the same input node has be

generated previously to verify the survivability of the action.

Once this is cleared it will then relinquish the control to the

Network creation block.

I/O(Input / Output)

This block generates keystroke when locations are received

from the environment block.

All the inputs that are generated are monitored by this block,

also all the possible combinations of the inputs are tried to

test the conditions of the environment and the character.

Initially in the program this block plays a vital role as this

block will ensure that the program starts working as soon as

it is started.

Outputs from this block are then forwarded to Node

Creation.

Environment

In this block environment refers to the positions and

locations of the character on the screen.

These need to be monitored to ensure that progress is being

made by the algorithm which can be then monitored by AI

or human if necessary.

This block will basically deal with creating position of the

game character with respect to objects that are stationary in

the game, while doing so it will also monitor the locations

and paths of the object that are harmful for the game

character.

Output generated by this block are forwarded to the input

generation block where the input as keystroke from the

gamepad are taken.

IV. PROPOSED FLOW

V. RESULT

We were able to create a program which had the ability to

implement evolution theorized in the paper and learn to play

the game on its own, the game we used here is 8 bit Mario.

The initial run for the program to gather data for making

decisions is about 3 hours when it reaches a set number of

generations. This is variable as each run is dynamically

different that the older run.

The program only has knowledge of possible inputs that it

can take i.e. Up, Down, Right, Left, A,B,X and Y. All these

are standard inputs that can be given using a joystick and are

common all over the world. The program starts with taking

random inputs for the first few generations and later

progresses to improving on the existing inputs or discarding

the old once and using better input in each iteration. The

working data is stored in RAM of the computer and used for

comparison purposes of the program. The program will

improve generation wise and reach the end of the stage

without human help.

Once the program clears the stage on its own and moves to

the next stage of the game and starts working on the next

stage. Here, you can choose whether to move to next stage

or not. On the stage-selection screen.

There is a stage where the performance of the program is

saturated and it cannot be improved any further, if the

program is run after the pool is saturated then improvements

in the network are negligible in nature. This is because the

game is designed in a way where the user needs a specific

time to reach the stage end. The current record for fastest

human player to reach the end of the stage is time 4:56.245

(mm.ss) held by username: somewes dated: 25 May 2018 on

Nintendo platform.

Regardless of the saturation the breeding process continues,

however the time required hence forth for encountering a

game-changing connection is higher in linear fashion.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 2 Issue 12 Page 4730-4733, 2018 ISSN 2395-1621

© 2018, IERJ All Rights Reserved Page 4

This program is just to portray that implementing AI on a

smaller scale is possible and can be programmed to do

simple tasks on its own. This can be further improved by

implementing newer ideas in the respective fields.

REFERENCES

[1] Evolving Neural Networks through Augmenting

Topologies Kenneth O. Stanley kstanley@cs.utexas.edu

Department of Computer Sciences, The Uni- versity of

Texas at Austin, Austin, TX 78712, USA Risto

Miikkulainen risto@cs.utexas.edu Department of Computer

Sciences, The University of Texas at Austin, Austin, TX

78712,

USA

[2] A Tensor-based Mutation Operator for Neuroevolution

of Augmenting Topologies Aldo Marzullo, Department of

Mathematics and Computer Science University of Calabria,

Italy Claudio Stamileyz, Department of Mathematics and

Computer Science University of Cal-abria, Italy Giorgio

Terracina, Department of Mathematics and Computer

Science University of Cal- abria, Italy

[3] Human-level AIs killer application: Interactive computer

games, J. E. Laird and M. van Lent, in Proc. 17th Nat. Conf.

Artif. Intell., and 12th Ann. Conf. Innov. Appl. Artif. Intell.,

2000, pp. 11711178.

[4] Active guidance for a _nless rocket through

neuroevolution F. J. Gomez and R. Miikkulainen, in Proc.

Genetic Evol. Comput. Conf., 2003, pp. 20842095.

[5] Machines that Learn to Play Games M. Gardner, Sci.

Amer., vol. 206, no. 3, pp. 138144, 1962. J. Frnkranz,

Machine learning in games: A survey, , pp. 1159, 2001.

[6] Using a genetic algorithm to tune _rst-person shooter

bots N. Cole, S. Louis, and C. Miles, in Proc. Congr. Evol.

Comput., vol. 1, 2004, pp. 139145.

[7] Learning to play Pac-Man: An evolutionary,rule-based

approach M. Gallagher and A. Ryan, in Proc. Congr. Evol.

Comput., vol. 4, 2003, pp. 24622469.

[8] Generating war game strategies using a genetic

algorithm T. Revello and R. Mc-Cartney, in Proc. Congr.

Evol. Comput., vol. 2, 2002, pp. 10861091.

mailto:risto@cs.utexas.edu

